Mathematics | Algebra

1. Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
B. use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of so solution,
C. select tools, including real objects, manipulatives, paper and pencil, estimation, and number sense as appropriate, to solve problems;
D. communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate
E. create and use representations to organize, record
and communicate mathematical ideas;
analyze mathematical relationships to co
Communicate mathematical ideas; and
arrean ants using
Linear functions, equations, and inequalities. The student applies the mathematical rocess standards when using properties of linear functions to write and
inequalities, and systems of equations. The student is expected to:
A. determine the domain and range of a linear function in mathematical problems; determine reasonable domain and range values for real-world situations, both
位
$B y=C$, and $y-y 1=m(x-x 1)$, riven one point and the slope and given two points write linear equations in two variables given a table of values, a graph, and a verbal description
. write the solve equations involving direct variation; write the equation of a line that contains a given point and is perpendicular to a given line
Write an equation of a line that is parallel or perpendicular to the X or Y axis and determine whether the slope of the line is zero or undefined; write linear inequalities in two variables given a table values, a graph, and a verbal description; and values, a graph, and a verbal description.
2. Linear functions, equations, and ineq ualities. The student applies the mathematical process standards when using graphs of linear functions, key features, and related process standards when using graphs of linear functions, key features, and related equations, inequalities, and systems of equations. The student is expected to:
determine the slope of a line given a table of values, a graph, two points on the line, and an equation written in various fo
including $y=m x+b, A x+B y=C$, and $y-y 1=m(x-x 1)$;
B. calculate the rate of change of a linear function represented tabularly, graphically or algebraically in context of mathematical and rea-world problems; C. graph linear functions on the coordinate plane and identify key features, including graph the solution set of linear inequalities in two variables on the coordinate plane
E. determine the effects on the graph of the parent function $f(x)=x$ when $f(x)$ is
replaced by $\mathrm{f}(\mathrm{f}), \mathrm{f}(\mathrm{x})+\mathrm{d}, \mathrm{f}(\mathrm{x}-\mathrm{c}), f(\mathrm{f}(\mathrm{x})$ for specific values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d ; graph systems of two linear equations in two variables on the
coordinate plane and determine the solutions if they exist,
G. estimate graphically the solutions to systems of two linea equations with two variables in real-world problems; and graph the solution set of systems of two
3. Linear functions, equations, and inequalities. The student applies the mathematica rocess standards to formulate statistical relationships and evaluate their . calculate, using technology, the correlation coefficient betw two quantitative variables and interpret this quantity
measure of the strength of the linear association:
B. compare and contrast association and causation in real-world problems; and write, with and without technology, linear functions for to data to estimate solutions and make predictions for real-world problems.
4. Linear functions, equations, and inequalities. The student applies the mathematical process standards to solve, with and without technology, linear equations and
valuate the reasonableness of their solutions. The student is expeted solication of the distributive property is necessary and for which variables are included on both sides
B. solve linear inequalities in one variable, including those for
which the application of the distributive property is necessal
and for which variables are included on both sides; and
solve systems of two linear equations with two variable for mathematical and real-world problems.
5. Quadratic functions and equations. The student applies the mathematical proces tandards when using properties of quadratic functions to write and represent in multipl th and without technology, quadratic equations. The stu
determine the domain and range of quadratic func
B. write equations of quadratic functions given the vertex and another point o the graph, write the equation in vertex form $(f(x)=a(x-h) 2+k)$, and rewrite the equation from vertex form to standard form $(f(x)=a x 2+b x+c)$; and write quadratic functions when given real solutions and graphs of their related equations.
6. Quadratic functions and equations. The student applies the mathematical process standards when using graphs of quadratic functions and their related transformations to represent in multiple ways and determine, with and withou echnology, the solutions to equations. The student is expected to:
A. graph quadratic functions on the coordinate plane and use the graph to identify key attributes, if possible, including x-intercept, y-intercept, zeros, maximum
describe the relationship between the linear factors of quadratic
expressions and the zeros of their associated quadratic functions; and C. determine the effects on the graph of the parent function $f(x)=x 2$ when $f(x)$ is replaced by $a f(x), f(x)+d, f(x-c), f(b x)$ for specific values of a, b, c, and d.
7. Quadratic functions and equations. The student applies the mathematical process standards to solve, with and without technology, quadratic equations and evaluate the easonableness of their solutions. The student formulates statistical relationships and .
A. solve quadratic equations having real solutions by factoring, taking square
roots, completing the square, and applying the quadratic formula; and
write, using technology, quadratic functions that provide a reasonable fit to data to estimate solutions and make predictions for real-world problems.
8. Exponential functions and equations. The student applies the mathematica elated transformations to write, graph, and represent in multiple ways exponential equations and evaluate, with and without technology, the reasonableness of heir solutions. The student formulates statistical relationships and evaluat
heir reasonabless based $f(x)=$ abx and represent the domain and range using inequalities;
interpret the meaning of the values of a and b in exponential
functions of the form $f(x)=a b x$ in real-world problems;
C. write exponential functions in the form $f(x)=a b x$ (where b is a rational number) to describe problems arising from mathematical and real-world situations, including growth and decay;
D. graph exponential functions that model growth and decay and identify key features,
including y-intercept and asymptote, in mathematical and real-world problems; and Write, using technology, exponential functions that provic
9. Number and algebraic methods. The student applies the mathematical proces Number and algebraic methods. The student applies the mathematical process perations on polynomial expressions. The student is expected to:
A. add and subtract polynomials of degree one and degree two
B. multiply polynomials of degree one and degree two;
C. determine the quotient of a polynomial of degree one and polynomial of degree two when divided by a polynomial of degree one and polynomial of degree when the degree of the divisor does not exceed the degree of the dividend
D. rewrite polynomial expressions of degree one and degree two in equivalent forms using the distributive property
E. factor, if possible, trinomials with real factors in the form $\mathrm{a} \times 2+\mathrm{bx}+$
c, including perfect squar mials of degree two; and
. Nuber and algobraic methods. The student applies the the binomia. process standards and algebraic methods to rewrite algebraic expressions into equivalent forms. The student is expected to:
A. simplify numerical radical expressions involving square roots; and
B. simplify numeric and algebraic expressions using the laws of exponents, including integral and rational exponents.
10. Number and algebraic methods. The student applies the mathematical process standards and algebraic methods to write, solve, analyze, and equations, relations, and functions. The student is expected to
A. decide whether relations represented verbally, tabularly,
graphically, and symbolically define a function;
. evaluate functions, expressed in function notation, given one or more elements in their domains;
dientify terms of airm etic and geometric sequences when the wequences are given in function form using recursive processes sequences, given the value of several of their terms; and
E. solve mathematic and scientific formulas, and other iteral equations, for a specified variable.
