1. Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
A. apply mathematics to problems arising in everyday life, society, and the workplace;
B. use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution; C. select tools, including real objects, manipulatives, paper and pencil, estimation, and number sense as appropriate, to solve problems
communicate mathematical ideas, reasoning, and their implication representations, including symbols, diagrams, graphs, and language as appropriat E. create and use representations to organize, record,
and communicate mathematical ideas;
analyze mathematical relationships to connect and
communicate mathematical ideas; and
display, explain, andicustry mathematical ideas and arguments using precise mathematical language in written or oral communication.
2. Number and operations. The student applies mathematical process standards position and magnitude of whole numbers, and relationships within the numeration system related to place value. The student is expected to:
A. use concrete and pictorial models to compose and decompose numbers up to 1,200 in more than one way as a sum of so many thousands, hundreds, tens, and ones; B. use standard, word, and expanded forms to represent numbers up to 1,200 ;
C. generate a number that is greater than or less than a given whole number up to 1,200 ; D. use place value to compare and order whole numbers up to 1,200 using comparative language, numbers, and symbols ($>,<$, or $=$);
.
Nur Th
Number and operations. The student applies mathematical process stan are used to name parts of a whole. The student is expected to:
A. partition objects into equal parts and name the parts,
including halves, fourths, and eighths, using words;
B. explain that the more fractional parts used to make a whole, the smaller
the part; and the fewer the fractional parts, the larger the part;
C. use concrete models to count fractional parts beyond one whole using words and recognize how many parts it takes to equal one whole; and
3. Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations in order to solve addition and subtraction problems
.
A. add up to four two-digit numbers and subtract two-dig numbers using mental strategies and algorithms based on knowledge of place value and properties of operations;
C. solve one-step and multi-step word problems involving addition and subtraction within 1,000 using a variety of strategies based on place value, including algorithms; and D. generate and solve problem situations for a given mathematical number sentence involving addition and subtraction of whole numbers within 1,000 .
4. Number and operations. The student applies mathematical process standards to determine the value of coins in order to solve monetary transactions. The student is expected to:
A. determine the value of a collection of coins up to one dollar; and
to name the value of a collection of coins.
5. Number and operations. The student applies mathematical process standard to connect repeated addition and subtraction to multiplication and division A. model, create, and describe contextual multiplication situations in
which equivalent sets of concrete objects are joined; and
B. model, create, and describe contextual division situations in which a set of concrete objects is separated into equivalent sets.
6. Algebraic reasoning. The student applies mathematical process standards to identify and apply number patterns within properties of numbers and operations in order to describe relationships. The student is expe pairings of objects to represent the number;
B. use an understanding of place value to determine the number that is

10 or 100 more or less than a given number up to 1,200 ; and
C. represent and solve addition and subtraction word problems where unknowns may be any one of the terms in the problem.
8. Geometry and measurement. The student applies mathematical process standards to analyze attributes of two-dimensional shapes and three-dimensional solids to develop generalizations about their properties. The student is expected to:
A. create two-dimensional shapes based on given attributes,
including number of sides and vertices;
B. classify and sort three-dimensional solids, including spheres, cones, cylinders, rectangular prisms (including cubes as special rectangular prisms), and
C. classify and sort polygons with 12 or fewer sides according to attributes including identifying the number of sides and number of vertices;
D. compose two-dimensional shapes and three-dimensional
solids with given properties or attributes; and
E. decompose two-dimensional shapes such as cutting out a square from a rectangle, dividing a shape in half, or partitioning a rectangle into identical triangles and identify the resulting geometric parts.
9. Geometry and measurement. The student applies mathematical process standards to select and use units to describe length, area, and time. The student is expected to
A. find the length of objects using concrete models for standard units of length; describe the inverse relationship between the size of the unit and
the number of units needed to equal the length of an objecti
represent whole numbers as distances from any given location
C. represent whor any given location on a number line: using rulers, yardsticks, meter sticks, or measuring tapes;
E. determine a solution to a problem involving length, including estimating lengths F. use concrete models of square units to find the area of a rectangle by covering it with no gaps or overlaps, counting to find the total number of square units, and describing the measurement using a number and the unit; and
G. read and write time to the nearest one-minute increment using analog and digital clocks and distinguish between a.m. and p.m.
10. Data analysis. The student applies mathematical process standards to organize data to make it useful for interpreting in
A. explain that the length of a bar in a bar graph or the number of pictures in pictograph represents the number of data points for a given category,
B. organize a collection of data with up to four categories using
. pictographs and bar graphs with intervals of one or more
dte and solve one-step word problems involving addition or subtraction using draw conclusions and make predictions from information in a graph.
11. Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:
A. calculate how money saved can accumulate into a larger amount over time
B. explain that saving is an alternative to spending,
C. distinguish between a deposit and a withdrawal
D. identify examples of borrowing and distinguish between
responsible and irresponsible borrowing;
E. identify examples of lending and use concepts of benefits
F. differentiate between producers and consumers calculate the cost to produce a simple item.

